Parameter summaries and model selection

Models evaluated:


model description
sc.fm1 dot model
sc.fm2.0 lure
sc.fm2.1 snow
sc.fm2.2 temp
sc.fm2.3 pass
sc.fm3.0 lure + snow
sc.fm3.1 lure + pass
sc.fm4.0 lure + snow + temp
sc.fm4.2 lure + snow + temp + pass
sc.fm5.0 lure + snow + temp + pass + temp * snow
sc.fm5.1 lure + snow + temp + pass + lure * snow




AmericanBadger



model metadata:


survey n_sites detections rep_period model_aggragate_reps state_buffer iterations burnin thin sigma.mean sigma.sd
Humphreys Basin 31 11 7 days 300 2.5 350000 20000 20 1.15 0.37



global models:


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm5.0 lure 0.62159 0.271 0.00109 0.0008485 0.0020000
sc.fm5.0 snow 0.67267 0.151 0.00109 0.0004848 0.0007879
sc.fm5.0 temp 0.96448 0.141 0.00048 0.0004848 0.0008485
sc.fm5.0 pass 0.41529 0.971 0 0.0046667 0.0000000
sc.fm5.0 temp*snow 0.98906 0.169 0 0.0009697 NA
sc.fm5.1 lure 0.46551 0.415 0.00109 0.0008485 0.0020000
sc.fm5.1 snow 0.80797 0.129 0.00109 0.0004848 0.0007879
sc.fm5.1 temp 0.96044 0.133 0.00048 0.0004848 0.0008485
sc.fm5.1 pass 0.44032 0.982 0 0.0046667 0.0000000
sc.fm5.1 lure*snow 0.9609 0.146 0 0.0007273 NA



single covariate models:


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm2.0 lure 0.7182 0.190 0.00109 0.0008485 0.0020000
sc.fm2.1 snow 0.65094 0.145 0.00109 0.0004848 0.0007879
sc.fm2.2 temp 0.99546 0.107 0.00048 0.0004848 0.0008485
sc.fm2.3 pass 0.43578 1.019 0 0.0046667 0.0000000



All models: Covariates with p values below .11 (bayesian p, probability covariate is not null)


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions



parameter support:


level support covariates
good pval and rev MCMC
moderate pval or rev MCMC
poor neither lure - snow - temp - pass - snow*temp - lure*snow



models with significant covariates:




waic:


model description WAIC
sc.fm1 dot model 104.0561



Density per 100km, significant models:


## Warning: The `x` argument of `as_tibble.matrix()` must have column names if `.name_repair` is omitted as of tibble 2.0.0.
## Using compatibility `.name_repair`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.



top models density per 100sq km, significant covariates:


species model covs n_effective mode hdi_89pct_lower hdi_89pct_upper
AmericanBadger sc.fm1 D 474 1.311 0.6 25.99



notes:


no covariate support


AmericanBlackBear



notes:


lure seems to be significant, but the top model (with lure) did not converge, more difficulty

with black bear and the sc model


AmericanMarten



model metadata:


survey n_sites detections rep_period model_aggragate_reps state_buffer iterations burnin thin sigma.mean sigma.sd
Humphreys Basin 31 42 7 days 300 2.5 350000 20000 20 0.765 0.13



global models:


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm5.0 lure 0.02628 6.890 0.02764 0.0269697 0.0406061
sc.fm5.0 snow 0.32365 0.172 0.00327 0.0029091 0.0028485
sc.fm5.0 temp 0.65479 0.098 0.00018 0.0001818 0.0006667
sc.fm5.0 pass 0.86411 0.196 0 0.0011515 0.0000000
sc.fm5.0 temp*snow 0.65996 0.135 0 0.0004242 NA
sc.fm5.1 lure 0 234.752 0.02764 0.0269697 0.0406061
sc.fm5.1 snow 0.01174 5.292 0.00327 0.0029091 0.0028485
sc.fm5.1 temp 0.50219 0.165 0.00018 0.0001818 0.0006667
sc.fm5.1 pass 0.86027 0.182 0 0.0011515 0.0000000
sc.fm5.1 lure*snow 0.04792 2.987 0 0.0004848 NA



single covariate models:


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm2.0 lure 0.02407 8.337 0.02764 0.0269697 0.0406061
sc.fm2.1 snow 0.09465 0.596 0.00327 0.0029091 0.0028485
sc.fm2.2 temp 0.92543 0.060 0.00018 0.0001818 0.0006667
sc.fm2.3 pass 0.9093 0.189 0 0.0011515 0.0000000



All models: Covariates with p values below .11 (bayesian p, probability covariate is not null)


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm5.1 lure 0 234.752 0.02764 0.0269697 0.0406061
sc.fm5.1 snow 0.01174 5.292 0.00327 0.0029091 0.0028485
sc.fm3.1 lure 0.02146 8.388 0.02764 0.0269697 0.0406061
sc.fm2.0 lure 0.02407 8.337 0.02764 0.0269697 0.0406061
sc.fm5.0 lure 0.02628 6.890 0.02764 0.0269697 0.0406061
sc.fm4.2 lure 0.03823 4.547 0.02764 0.0269697 0.0406061
sc.fm4.0 lure 0.03893 4.717 0.02764 0.0269697 0.0406061
sc.fm3.0 lure 0.04094 3.674 0.02764 0.0269697 0.0406061
sc.fm5.1 lure*snow 0.04792 2.987 0 0.0004848 NA
sc.fm2.1 snow 0.09465 0.596 0.00327 0.0029091 0.0028485



parameter support:


level support covariates
good pval and rev MCMC
moderate pval or rev MCMC lure
poor neither snow - temp - pass - snow*temp - lure*snow



models with significant covariates:




waic:


model description WAIC
sc.fm2.0 lure 297.824
sc.fm1 dot model 298.259



Density per 100km, significant models:




top models density per 100sq km, significant covariates:


species model covs n_effective mode hdi_89pct_lower hdi_89pct_upper
AmericanMarten sc.fm2.0 D 900 17.299 6.04 62.85
AmericanMarten sc.fm2.0 lure 15611 -0.818 -1.53 -0.31



notes:


moderate support for lure, too much to ignore

better estimate with the dot model.. but cant really justify ignoring waic


Bobcat



model metadata:


survey n_sites detections rep_period model_aggragate_reps state_buffer iterations burnin thin sigma.mean sigma.sd
Humphreys Basin 31 10 7 days 300 2.5 350000 20000 20 1.175 0.14



global models:


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm5.0 lure 0.99579 0.129 0.00079 0.0015152 0.0015758
sc.fm5.0 snow 0.59088 0.462 0.00824 0.0101818 0.0122424
sc.fm5.0 temp 0.21206 1.188 0.54261 0.5366667 0.6448485
sc.fm5.0 pass 0.96952 0.251 0 0.0024242 0.0000606
sc.fm5.0 temp*snow 0.93075 0.307 0 0.0194545 NA
sc.fm5.1 lure 0.98502 0.172 0.00079 0.0015152 0.0015758
sc.fm5.1 snow 0.43507 0.609 0.00824 0.0101818 0.0122424
sc.fm5.1 temp 0.00297 46.505 0.54261 0.5366667 0.6448485
sc.fm5.1 pass 0.99335 0.273 0 0.0024242 0.0000606
sc.fm5.1 lure*snow 0.6408 0.264 0 0.0011515 NA



single covariate models:


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm2.0 lure 0.96054 0.134 0.00079 0.0015152 0.0015758
sc.fm2.1 snow 0.09121 3.082 0.00824 0.0101818 0.0122424
sc.fm2.2 temp 0.00096 177.180 0.54261 0.5366667 0.6448485
sc.fm2.3 pass 0.91793 0.289 0 0.0024242 0.0000606



All models: Covariates with p values below .11 (bayesian p, probability covariate is not null)


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm2.2 temp 0.00096 177.180 0.54261 0.5366667 0.6448485
sc.fm5.1 temp 0.00297 46.505 0.54261 0.5366667 0.6448485
sc.fm4.2 temp 0.00367 34.741 0.54261 0.5366667 0.6448485
sc.fm4.0 temp 0.00551 47.815 0.54261 0.5366667 0.6448485
sc.fm2.1 snow 0.09121 3.082 0.00824 0.0101818 0.0122424
sc.fm3.0 snow 0.10523 2.593 0.00824 0.0101818 0.0122424



parameter support:


level support covariates
good pval and rev MCMC temp
moderate pval or rev MCMC
poor neither lure - snow - pass - snow*temp - lure*snow



models with significant covariates:




waic:


model description WAIC
sc.fm2.2 temp 96.27115
sc.fm1 dot model 106.35869



Density per 100km, significant models:




top models density per 100sq km, significant covariates:


species model covs n_effective mode hdi_89pct_lower hdi_89pct_upper
Bobcat sc.fm2.2 D 595 71.639 7.25 161.95
Bobcat sc.fm2.2 temp 15479 1.376 0.76 2.23



notes:



Coyote



model metadata:


survey n_sites detections rep_period model_aggragate_reps state_buffer iterations burnin thin sigma.mean sigma.sd
Humphreys Basin 31 188 7 days 300 2.5 350000 20000 20 0.865 0.205



global models:


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm5.0 lure 0.01823 3.205 0.05776 0.0603636 0.0868485
sc.fm5.0 snow 0.02881 1.004 0.00236 0.0018788 0.0032121
sc.fm5.0 temp 0.96754 0.032 6e-05 0.0003030 0.0002424
sc.fm5.0 pass 0.10739 0.944 0 0.0041818 0.0000000
sc.fm5.0 temp*snow 0.02378 2.188 0 0.0550303 NA
sc.fm5.1 lure 0 170.277 0.05776 0.0603636 0.0868485
sc.fm5.1 snow 0.01763 1.536 0.00236 0.0018788 0.0032121
sc.fm5.1 temp 0.24908 0.124 6e-05 0.0003030 0.0002424
sc.fm5.1 pass 0.15406 0.634 0 0.0041818 0.0000000
sc.fm5.1 lure*snow 0.14597 0.283 0 0.0001212 NA



single covariate models:


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm2.0 lure 0.00286 10.946 0.05776 0.0603636 0.0868485
sc.fm2.1 snow 0.09541 0.234 0.00236 0.0018788 0.0032121
sc.fm2.2 temp 0.72843 0.035 6e-05 0.0003030 0.0002424
sc.fm2.3 pass 0.12428 0.825 0 0.0041818 0.0000000



All models: Covariates with p values below .11 (bayesian p, probability covariate is not null)


model covs bayes_p_val bayes_factor revMCMC_constrained revMCMC_unconstrained revMCMC_noInteractions
sc.fm4.0 lure 0 44.457 0.05776 0.0603636 0.0868485
sc.fm5.1 lure 0 170.277 0.05776 0.0603636 0.0868485
sc.fm4.2 lure 0.00043 44.842 0.05776 0.0603636 0.0868485
sc.fm3.0 lure 0.00125 20.976 0.05776 0.0603636 0.0868485
sc.fm2.0 lure 0.00286 10.946 0.05776 0.0603636 0.0868485
sc.fm3.1 lure 0.00372 13.576 0.05776 0.0603636 0.0868485
sc.fm5.1 snow 0.01763 1.536 0.00236 0.0018788 0.0032121
sc.fm5.0 lure 0.01823 3.205 0.05776 0.0603636 0.0868485
sc.fm5.0 temp*snow 0.02378 2.188 0 0.0550303 NA
sc.fm3.0 snow 0.02633 0.943 0.00236 0.0018788 0.0032121
sc.fm5.0 snow 0.02881 1.004 0.00236 0.0018788 0.0032121
sc.fm4.0 snow 0.04314 0.612 0.00236 0.0018788 0.0032121
sc.fm4.2 snow 0.07909 0.397 0.00236 0.0018788 0.0032121
sc.fm2.1 snow 0.09541 0.234 0.00236 0.0018788 0.0032121
sc.fm5.0 pass 0.10739 0.944 0 0.0041818 0.0000000



parameter support:


level support covariates
good pval and rev MCMC
moderate pval or rev MCMC lure
poor neither snow - temp - pass - snow*temp - lure*snow



models with significant covariates:




waic:


model description WAIC
sc.fm2.0 lure 939.6044
sc.fm1 dot model 947.8136



Density per 100km, significant models:




top models density per 100sq km, significant covariates:


species model covs n_effective mode hdi_89pct_lower hdi_89pct_upper
Coyote sc.fm2.0 D 760 63.394 23.57 148.05
Coyote sc.fm2.0 lure 16500 -0.346 -0.54 -0.18



notes:


lure has p support, and slight rev mcmc support, other vars have no support from rev mcmc

poor model convergenc, maybe try with higher M

estimate is questionable..


LongTailedWeasel



notes:


model did not converge


WhiteTailedJackrabbit



notes:


poor convergence